直线滚动导轨的寿命 在选用直线滚动导轨时,应对其本身的寿命进行初步验算。 当直线滚动导轨承受负荷并做滚动运动时,导轨面和滚动部分(钢珠或滚柱)就会不断地受到循环应力的作用,一旦达到临界值,滚动表面就会产生疲劳破损,在某些部位产生鱼鳞状剥离,此现状称为表面剥落。 所谓直线滚动导轨的寿命,就是指导轨表面或滚动部分由于材料的滚动疲劳而发生表面剥落时为止总行走距离。 直线滚动导轨的寿命具有很大的分散性。即使同批制造的产品,在同样运转条件下使用,其寿命也会有很大的差距。因此,为了确定直线滚动导轨的寿命,通常用额定寿命这一参数。 所谓额定寿命是指让—批同样的直线滚动导轨逐个地在相同的条件下运动,其中90%的总运行距离能达到不发生表面剥落。 对于使用钢珠的直线滚动导轨,额定寿命L为: (1) 对于使用滚柱的直线滚动导轨,额定寿命为: 式中L:额定寿命.km; C:基本额定动负荷,kN; P C:计算负荷,LN;
f H:硬度系数; f T:温度系数; f C:接触系数, f W:负荷系数。 由上述两式能够准确的看出,直线滚动导轨的额定寿命受硬度系数f H、温度系数f T、接触系数f C、负荷系数f W的直接影响。 2.1 硬度系数 为了充分的发挥直线滚动导轨的优良性能,与钢珠或滚柱相接触的导轨表面从表面到适当的深度应具有HRC58~64的硬度。如果因某一些原因达不到所要求的硬度,会导致寿命减少。计算时要将基本额定动负荷C乘以硬度系数f H。f H与导轨表面的硬度关系见图1所示。
2.2 温度系数f T 直线滚动导轨的工作时候的温度超过100℃时,导轨表面的硬度就会下降,与在常温下使用相比,寿命会缩短,计算时要将基本额定动负荷C乘以温度系数f T,见图2所示。 同时,在高温下运行时,还应考虑材料产生的尺寸改变及润滑方式的不同。
直线导轨的结构设计(含滚动导轨) newmaker 1 导轨的作用和设计的基本要求 当运动件沿着承导件作直线运动时,承导 件上的导轨起支承和导向的作用,即支承运动件和保证运动件在外力(载荷及运动件本身的重量)的作用下,沿给定的方向进行直线运动。对导轨的要求如下: 1.一定的导向精度。导向精度是指运动件沿导轨移动的直线性,以及它与有关基面间的相互位置的准确性。 2.运动轻便平稳。工作时,应轻便省力,速度均匀,低速时应无爬行现象。 3.良好的耐磨性。导轨的耐磨性是指导轨经常使用后,能保持一定的使用精度。导轨在使用的过程中要磨损,但应使磨损量小,且磨损后能自动补偿或便于调整。 4.足够的刚度。运动件所受的外力,是由导轨面承受的,故导轨应有足够的接触刚度。为此,常用加大导轨面宽度,以降低导轨面比压;设置辅助导轨,以承受外载。 5.气温变化影响小。应保证导轨在工作时候的温度变化的条件下,仍能正常工作。 6.结构工艺性好。在保证导轨其它要求的前提下,应使导轨结构简单,便于加工、测量、装配和调整,降低成本。 不同设备的导轨,必须作具体分析,对其提出相应的设计要求。必须指出,上述六点要求是相互影响的。 2 导轨设计的主要内容 设计导轨应包括下列几方面内容: 1.根据工作条件,选择合适的导轨类型。 2.选择导轨的截面形状,以保证导向精度? 3.选择适当的导轨结构及尺寸,使其在给定的载荷及工作温度范围内,有足够的刚度,良好的耐磨性,以及运动轻便和平稳。 4.选择导轨的补偿及调整装置,经长期使用后,通过调整能保持需要的导向精度。 5.选择合理的润滑方法和防护装置,使导轨有良好的工作条件,以减少摩擦和磨损。 6.制订保证导轨所必须的技术条件,如选择适当的材料,以及热处理、精加工和测量方法等。 3 导轨的结构设计 1. 滑动导轨 (1) 基本形式(见图21-10)
实验四用合象水平仪或框式水平仪 测量直线度误差 一、实验目的 1. 掌握用水平仪测量直线度误差的方法及数据处理。 2. 加深对直线度误差定义的理解。 二、实验内容 用合象水平仪或框式水平仪测量直线度误差。 三、测量原理及计量器具说明 机床、仪器导轨或其他窄而长的平面,为了控制其直线度误差,常在给定平面(垂直平面、水平平面)内进行检测。常用的计量器具有框式水平仪、合象水平仪、电子水平仪和自准直仪等。使用这类器具的共同特点是测定微小角度变化。由于被测表面存在着直线度误差,计量器具置于不同的被测部位上,其倾斜角度就要发生相应的变化。如果节距(相邻两测点的距离)一经确定,这个变化的微小倾角与被测相邻两点的高低差就有确切的对应关系。通过对逐个节距的测量,得出变化的角度,用作图或计算,即可求出被测表面的直线度误差。由于合象水平仪的测量准确度高、测量范围大(±10 mm/m)、测量效率高、价格便宜、携带方便等优点,故在检测工作中得到了广泛的采用。 合象水平仪的结构如图1a、d所示,它由底板1和壳体4组成外壳基体,其内部则由杠杆2、水准器8、两个棱镜7、测量系统9、10、11以及放大镜6所组成。使用时将合象水平仪放于桥板(图2)上相对不动,再将桥板放于被测表面上。如果被测表面无直线度误差,并与自然水平基准平行,此时水准器的气泡则位于两棱镜的中间位置,气泡边缘通过合象棱镜7所产生的影象,在放大镜6中观察将出现如图1b所示的情况。但在实际测量中,由于被测表面安放位置不理想和被测表面本身不直,导致气泡移动,其视场情况将如图1c所示。此时可转动测微螺杆10,使水准器转动一角度,从而使气泡返回棱镜组7的中间位置,则图1c中两影象的错移量△消失而恢复成一个光滑的半圆头(图1b)。测微螺杆移动量s导致水准器的转角α(图1d)与被测表面相邻两点的高低差h有确切的对应关系,即 图1
用水平仪测量导轨直线度的方法 在机械维修专业中常用到水平仪,它是机床修理、调整、安装最常用的测量仪器之一,主要用于检测机床导轨直线度、工作台平面度等。下面我们来了解水平仪是怎样测量导轨直线度的。 机床工作台的直线移动精度,在很大程度上取决于床身导轨的直线度。但机床导轨一般比较长,往往难以用平尺、检验棒等作为基准测量导轨的直线度,这时可以用水平仪进行测量。其工作原理是:假设在被测导轨上有一条理想水平直线作为测量基准,再把被测导轨分成若干段,然后用水平仪分别测出各段相对于理想水平直线所倾斜的角度值,通过绘制坐标图来确定导轨与水平直线的最大误差格数,最后运用公式(△H=n I L)计算出导轨与水平直线的误差值。具体步骤如下: 1、将水平仪放在导轨中间,调平导轨,防止导轨倾斜,无法准确读出水平仪读数。 2、水平仪放在一定长度L)的平行桥板上,不能直接放置在被测表面上。 3、将导轨分段,每段长度与桥板相适应,依次首尾相接,逐段测量并记录下每段读数及倾斜方向。 4、根据各段读数画出导轨直线度曲线图:以导轨的长度为横坐标,水平仪读数为纵坐标。根据读数依次画出各折线
段,每一段的起点要与前一段的终点重合。 例如C6132 车床的导轨长 1600mm.用精 度为l000mm 的框式水平仪 测量导轨在垂直平面内直线度误差。水平仪桥板长度为200mm,分8段测量。每段读数依次为:+l、+1、+2、0、-1、-l、0、,如图1所示。 按一定比例画出纵横坐标,作出导轨直线、用两端点连线法或最小区域法确定最大误差读数和误差曲线形状。 两端点连线法:若导轨直线度误差曲线呈单凸或单凹时,作首尾两端点连线I-I,并过曲线最高点或最低点)作Ⅱ-Ⅱ直线与I—I平行。两包容线间取大坐标值即为最人误差值。如图2所示,最大误差在导轨长为600mm处。曲线右端点坐标值为格,按相似三角形解法,导轨600mm处最大误差值为=格。 最小区域 法:如果直线 度误差曲线
滚动导轨与直线导轨的差别 导轨是由金属或其它材料制成的槽或脊,可承受、固定、引导移动装置或 设备并减少其摩擦的装置。通常直线往复运动场合,如引导、固定机械部件、 专用设备、仪器等。它拥有比直线轴承更高的额定负载,同时可以承担--定的 扭矩,可在高负载的情况下实现高精度的直线运动。 通常使用的导轨主要分为滑动导轨和滚动导轨两种。相比于滚动导轨,滑动导轨 有运动轻快、无间隙、运动顺畅的特点。运动轻快主要体现在摩擦阻力方面,滑动的 摩擦系数大,通过摩擦阻力计算公式F=μ X mg,我们可以发现相同质量下的物体滑动摩擦阻力较大。事实上,滚动运动仅使用滑动运动约1/100的力度就能使物体运动。 而且滑动导轨因摩擦面积大会出现运动不畅或卡死现象,所以滑动导轨优势明显。 首先直线导轨的磨损较小,这可以大大提高导轨和设备的使用寿命。由于 在相互运动的金属材料之间如果不及时供给润滑油脂,就会产生更严重的磨耗 问题,从而影响使用。所以润滑效果同样是考量导轨系统好坏的因素之一。与 滑动导轨相比,滚动导轨的接触部分较小,而且是滚动摩擦;因此只需要少量的润滑油就可以满足使用要求。通常情况下滚动导轨的润滑油补给周期为1个月,运行长度约100Km。 而滚动导轨适用于高速运动;这是因为滚动导轨与滑动运动单位相比不容易产生摩擦热,所以热形变量很小,两则直线倍以上。在使用寿命方面,滑动导轨受到的摩擦阻力较大,运动磨损随之也大,磨损带来的 精度变化较大,所以设备寿命预测困难。滚轮结构高速运行极低噪声现存导轨 采用的是钢球滚轮式技术,多数的钢球滚动在轨道和滑块的球循环道内,所以 会引起噪音,而运动速度也受限了。但是,我们的双轴心高速导轨采用的是双 列式轴承,轴承会完全地滚动,因此,会得到最大回转速度的直线运动及静音 作用。可调节间隙精度。导轨和滑块的组成状态也可以利用滑块侧面的螺帽来 调节隔间。双轴心导轨的几大特点1、耐蚀性及防锈性 导轨的发展也就是直线运动系统的发展过程,工业导轨首先出现的是滑动导向。但因为摩擦阻力较大、运动存在间隙、寿命低、润滑油使用量大等原因很 快就被淘汰掉。进而衍生出滚动导向系统,虽然比滑动系统略有优势,但仍存 在-一些问题,如轴易弯曲、载荷较小等缺点。紧接着工业导轨又出现了直线轴承和直线导轨,这两者的外形尺寸虽然相近,但直线导轨的承载能力更强。直 线导轨的钢球接触方式和直线轴承不同,相比于直线轴承易弯曲,直线导轨采 用全导轨支撑不易折弯,在荷载方面,直线导轨的单位钢球容许载荷提高了13倍,整体寿命提高了2200倍。
滚动直线导轨副以滑块和导轨间的滚动代替相对接触滑动。滚动直线导轨副按滚动体的形状 可分为滚珠式、滚柱式和滚针式三种。 1、滚珠式 滚道包括滑块滚道、导轨滚道,以滚珠作为滚动体,滚珠与滚道的接触为点接触。滚珠式导 轨副的灵敏度好,定位精度高,但承载能力和刚度较小,需要通过预紧来提高刚度,适用于 非高刚性的数控机床。 2、滚柱式 相比于滚珠导轨副,滚珠式导轨副以滚柱作为滚动体,滚柱与滚道的接触为线接触。滚柱在 承受高负荷时,会形成极微小的弹性变形,而承载力及刚度会更大。主要应用于加工中心、NC复合加工机床、磨床、龙门式加工中心等大、重型机床,特别适合超高刚性、高精度、 超重负荷等高档机床使用。 3、滚针式 滚针导轨的特点是尺寸小,结构紧凑,为了提高工作台的移动精度,尺寸会按照直径进行分组,滚针导轨适用于导轨尺寸受限制的机床。 在数控机床的设计中,滚动直线导轨副的作用是对运动部分进行支撑和导向。 为了在机床的设计中更合理地选用滚动直线导轨副,使其充分发挥作用,选用滚动直线导轨 副的基本条件包括三部分内容: 1、确定导轨副的工作情况,即使用场合、导轨安装布局和安装方式。根据不同的应用场合,需要选择具有不同的预紧力和精度的导轨副。 2、确定导轨副的工作参数,即工作台的质量、中心、丝杠驱动位置以及工作台的负载。工 作参数能够体现整个导轨副所受的外载荷,是计算每个滑块受力时必不可少的条件。 3、确定导轨副的设计要求,即运行速度及加速度、精度要求、静态安全系数和寿命要求等。精度一般由滑块基准面相对同一则导轨侧面的行走直线误差、组合高度误差构成。不同的应 用场合选用不同精度的导轨副,对于多数机械设备选用普通级即可满足,数控机床设备选用 精密级,精密机械可选用超精密级。
直线引言 在工程实际中,评定导轨直线度误差的方法常用两端点连线法和最小条件法。两端点连线法,是将误差曲线首尾相连,再通过曲线的最高和最低点,分别作两条平行于首尾相连的直线,两平行线间沿纵坐标测量的数值,通过数据处理后,即为导轨的直线度误差值;最小条件法,是将误差曲线的“高、高”(或“低、低”)两点相连,过低(高)点作一直线与之相平行,两平行线间沿纵标坐测量的数值,通过数据处理后,即为导轨的直线误差值。 最小条件法是仲裁性评定。两端点连线法不是仲裁性评定,只是在评定时简单方便,所以在生产实际中常采用,但有时会产生较大的误差。本文讨论这两种评定方法之间产生误差的极限值。 2误差曲线在首尾连线的同侧 测量某一型号液压滑台导轨的直线度误差,得到直线所示。由图可知,该误差曲线在其首尾连线的同侧。下面分别采用最小条件法和两端点连线法,评定该导轨直线)最小条件法评定直线度误差 根据最小条件法,图1曲线与坐标原点重合),用直a1a1线两平行线包容的区域,沿y轴测量的数值,经数据处理,即为该导轨的直线度误差值
δ最小法。 (2)两端点连线法评定直线度误差 根据两端点连线曲线的首尾也分别是曲线所示。将曲线的平行线两平行线包容的区域,沿y轴测量的数值,经数据处理,即为该导轨的直线度误差值δ两端点。 (3)求解两种评定方法产生的误差极限 由于是对同一导轨误差曲线”分别对应图3中的“端点1”、“端点2”和“高点3”,即直线与直线重合,直线重合,因此两种评定方法产生的误差值为零
导轨的选型及计算 按结构特点和摩擦特性划分的导轨类型见表6-1[5] ,各类导轨的主要特点及 应用列于表中。 表6-1 导轨类型特点及应用 导轨 类型 主要特点 应用 导轨类型 主要特点应用滑动 导轨 1, 结构简单,使用维修 方便。2,未形成完全液体摩擦时低速易爬行3,磨损大寿命低,运动 精度不稳定 普通机床,冶金设备上应用普遍 滚动导轨 1,运动灵敏度高 ,低速运动平稳性好 ,定位精 度高。2,精度保持性好,磨损少,寿命长。3,刚性和抗振性差,结构复杂 成本高,要求良好的保 护 广泛用于各类精密机床,数控 机床,纺织机械等 塑料 导轨 1,动导轨表面贴塑料软带等与铸铁 或钢导轨 搭配,摩擦系数小,且动静摩擦系数搭配 ,不易 爬行,抗摩擦性能好。2,贴塑工艺简单。3,刚度较低,耐热性差容易蠕变 主要应用与中大型机床压强不大的导轨应用日益广泛 动压导轨 1, 速 度 高(90m/min~600m/min),形成液体摩擦 2,阻尼 大,抗阵性好 3,结构简单,不需复杂供油系统, 使用维护方便4,油膜 厚度随载荷与速度而变化。影响加工精度,低速重载易出现导轨面接触 主要用语速度高,精度要求一般的机床主运动导轨镶钢,镶金属导 轨 1,在支撑导轨上镶装有一定硬度的不钢板或钢 带,提高导轨耐磨性,改善摩擦或满足焊接床身结构需要。2,在动导轨上镶有青铜只类的金属防止咬合磨损 ,提高耐 磨性,运动平稳精度高 镶钢导轨工艺复杂,成本高。常用于重型机床如立车,龙门铣床的导轨上 静压导轨 1,摩擦系数很小 ,驱动 力小。2,低速运动平稳性好 3,承载能力大,刚性,吸阵性好4,需要一 套液压装置,结构复杂, 调整困难 各种大 型,重型机床,精密 机床,数控机床的工作台 6.1 初选导轨型号及估算导轨长度 X 方向初选导轨型号为4 94012GGB20BAL2P [6] 具体数据见《机械设计 手册》9-149 Y 方向初选导轨型号为41090 22GGB20AAL 1P 导轨的运动条件为常温,平稳,无冲击和震动为何选用滚动直线)滚动直线导轨副动静摩擦力之差很小,摩擦阻力小,随动性极好。有利
一、直经度的定义 限制实际直线对理想直线变动量的一种形状公差。由形状(理想包容形状)、大小(公差值)、方向、位置四个要素组成。用于限制一个平面内的直线形状偏差,限制空间直线在某一方向上的形状偏差,限制空间直线在任一方向上的形状偏差。 几何误差是指零件加工后的实际形状、方向和相互位置与理想形状、方向和相互位置的差异。在形状上的差异称形状误差,在方向上的差异称方向误差,在相互位置上的差异称位置误差。直线度在几何公差中是最基础的部分,按检测关系分直线度属于被测要素中的单一要素——指对要素本身提出形状公差要求的被测要素。 二、导轨直线度误差检测方法 直线度误差的检测方法很多。工件较小时,常以刀口尺、检验平尺作为模拟理想直线,用光隙法或间隙法确定被测实际要素的直线度误差。当工件较大时,则常按国标规定的测量坐标值原则进行测量,取得必要的一组数据,经作图法或计算法得到直线度误差,还有种高效的测量方法就是直接利用太友科技的数据采集仪连接百分表来测量,无需人工读数、作图、分析,采集仪会自动读数数据并进行数据分析,一旦测量结果不合格还会自动产生报警功能。 测量直线度误差常用的仪器有:框式水平仪、合象水平仪、电感式水平仪、自准直仪以及数据采集分析仪等。这类仪器的特点是:测定微小角度的变化,换算为线值误差。本实验用合象水平仪和数据采集分析仪来进行直线、利用合象水平仪测量直线)合象水平仪的介绍 合象水平仪采用光学放大,并以对称棱镜使双象重合来提高读数精度,利用杠杆和微动螺杆传动机构来提高测量精度和增大测量范围。将合象水平仪置于被测工件表面上,当被测两点相对水平线不等高时,将引起两气泡象不重合,转动度盘,使两气泡重合,度盘转过格数代表被测两点相对水平线。
直线导轨常简称为导轨,它的作用是支承并引导运动部件沿给定轨迹和行程作直线往复运动。导轨由两个相对运动的部件组成,一个部件固定在机架上,称为定轨,另一个在定轨上移动,称为动轨。 导轨多用于需要作直线往复运动的执行器。导轨的运动性能在低速时要求平稳、无爬行、定位准确,高速时要求惯量小、无超调或振荡。导轨的精度、承载能力和寿命对系统的精度、承载能力和寿命有直接影响。按轨面摩擦性质可将导轨分为滑动导轨、滚动导轨、液体静压导轨、气浮导轨、磁浮导轨。滑动导轨结构简单,刚性好,摩擦阻力大,连续运行磨损快,制造中轨面刮研工序的要求很高。滑动导轨的静摩擦因数与动摩擦因数差别大,因此低速运动时可能产生爬行现象。 滑动导轨常用于各种机床的工作台或床身导轨,装配在动轨上的多是工作台、滑台、滑板、导靴、头架等。导轨截面有矩形、燕尾形、V形、圆形等。重型机械中常将几种截面形状组合使用,共同承担导向和支承的作用。滚动导轨是在运动部件与支承部件之间放置滚动体,如滚珠、滚柱、滚针或滚动轴承。滚动导轨的优点是:摩擦系数不大予滑动导轨摩擦系数的1/10,静摩擦因数与动摩擦因数差别小,不易出现爬行现象,可用小功率电动机拖动,定位精度高,寿命长。 滚动导轨的缺点是:阻尼小而容易引起超调或振荡,刚度低,制造困难,对脏污和轨面误差较敏感。滚动导轨多用于光学机械、精密仪器、数控机床、纺织机械等。液体静压导轨、气浮导轨和磁浮导轨的动轨和定轨之间存在流体,摩擦更小,几乎没有磨损,无爬行现象,
但是刚度低,阻尼小,设计、制造和运行控制较复杂。按结构可将导轨分为开式导轨和闭式导轨。开式导轨必须借助外力,例如自身重力,才能保证动轨与定轨的轨面正确接触,这种导轨承受轨面正压力的能力较大,承受偏载和倾覆力矩的能力较差。闭式导轨依靠本身的截面形状保证轨面的正确接触,承受偏载和倾覆力矩的能力较强,例如燕尾形导轨。影响导轨导向精度的主要因素有:直线度、两个轨面的平行度、轨面粗糙度、耐磨性能、刚度、润滑措施等。
实训十机床导轨直线度误差检测 一.实训目的 1、了解机床导轨直线度检测内容、原理、方法和步骤 2、掌握方框水平仪的使用方法 3、实训中测试数据的处理及误差曲线的绘制 二.实训设备 车床床身、方框水平仪、桥板 三.实训原理 直线度误差就是实际直线对其理想直线的变动量。直线.两端连线法。其中最小包容区域法的评定结果小于或等于其它两种方法。 在下图中,以最小包容区域线L MZ作为评定基线求得直线度误差f MZ的方法,就是最小包容区域法。对给定平面或给定方向的直线度误差f MZ,其计算方法:f MZ=f=d max-d min 式中d max、d min——检测中最大、最小偏离值,d i在L MZ上方取正值,下方取负值。 机床导轨直线度检测方法很多,有平尺检测、水平仪检测、自准仪检测、钢丝和显微镜检测等。本次实训用水平仪检测。 水平仪的刻度值有0.02/1000—0.05/1000,0.02/1000表示将该水 平仪放在1m长的平尺表面上,将平尺一端垫起0.02mm高时,平尺便倾斜一个α角,此时水平仪的气泡便向高处正好移动一个刻度值(即移动了一格)。水平仪和平尺的关系见下图
水平仪测量升(落)差原理图 tgα=ΔH/L=0.02/1000=0.00002 由于水平仪的长度只有200mm,所以tgα=ΔH1/L=ΔH1/200 ΔH1=200× tgα=200×0.00002=0.004mm 可见水平仪右边的升(落)差ΔH1与所用的水平仪规格有关,此外在实际使用水平仪也不一定是移动一格,例如移动了两格,水平仪还是200mm规格,则升(落)差ΔH1为 tgα=0.02×2/1000=ΔH1/200 ΔH1=200×0.02×2/1000=0.008mm 水平仪读数的符号,习惯上规定:气泡移动的方向和水平仪移动方向相同时,读数为正值,反之为负值。 四.实训步骤 1、检测床身前,擦净导轨表面将床身安置在适当的基础上,并基本调平。调平的目的是为了得到床身静态稳定性。 2、以200mm长等分机床导轨成若干段,将水平仪放置在导轨的左(右)端,作为检测工作的起点,记下此时水平仪气泡的位置,然后按导轨分段,首尾相接依次放置水平仪,记下水平仪每一段时气泡的位置,填入实训报告中。 3、作出实训报告。
直线导轨的结构设计(含滚动导轨) 来源:作者: 江苏泰州市德基数控机床技术部发表于:2007-5-18 已阅读1121次 1 导轨的作用和设计要求 当运动件沿着承导件作直线运动时,承导件上的导轨起支承和导向的作用,即支承运动件和保证运动件在外力(载荷及运动件本身的重量)的作用下,沿给定的方向进行直线运动。对导轨的要求如下: 1.一定的导向精度。导向精度是指运动件沿导轨移动的直线性,以及它与有关基面间的相互位置的准确性。 2.运动轻便平稳。工作时,应轻便省力,速度均匀,低速时应无爬行现象。 3.良好的耐磨性。导轨的耐磨性是指导轨长期使用后,能保持一定的使用精度。导轨在使用过程中要磨损,但应使磨损量小,且磨损后能自动补偿或便于调整。 4.足够的刚度。运动件所受的外力,是由导轨面承受的,故导轨应有足够的接触刚度。为此,常用加大导轨面宽度,以降低导轨面比压;设置辅助导轨,以承受外载。 5.气温变化影响小。应保证导轨在工作温度变化的条件下,仍能正常工作。 6.结构工艺性好。在保证导轨其它要求的前提下,应使导轨结构相对比较简单,便于加工、测量、装配和调整,减少相关成本。 不同设备的导轨,必须作具体分析,对其提出对应的设计的基本要求。必须指出,上述六点要求是相互影响的。 2 导轨设计的主要内容 设计导轨应包括下列几方面内容: 1.根据工作条件,选择正真适合的导轨类型。 2.选择导轨的截面形状,以保证导向精度。 3.选择适当的导轨结构及尺寸,使其在给定的载荷及工作时候的温度范围内,有足够的刚度,良好的耐磨性,和运动轻便和平稳。 4.选择导轨的补偿及调整装置,经经常使用后,通过调整能保持需要的导向精度。
5.选择合理的润滑方法和防护装置,使导轨有良好的工作条件,以减少摩擦和磨损。 6.制订保证导轨所必须的技术条件,如选择适当的材料,以及热处理、精加工和测量方法等。 3 导轨的结构设计 1. 滑动导轨 (1) 基本形式(见图21-10) 图21-10 三角形导轨:该导轨磨损后能自动补偿,故导向精度高。它的截面角度由载荷大小及导向要求而定,一般为90°。为增加承载面积,减小比压,在导轨高度不变的条件下,采用较大的顶角(110°~120°);为提高导向性,采用较小的顶角(60°)。如果导轨上所受的力,在两个方向上的分力相差很大,应采用不对称三角形,以使力的作用方向尽可能垂直于导轨面。 矩形导轨:优点是结构简单,制造、检验和修理方便;导轨面较宽,承载力较大,刚度高,故应用广泛。但它的导向精度没有三角形导轨高;导轨间隙需用压板或镶条调整,且磨损后需重新调整。 燕尾形导轨:燕尾形导轨的调整及夹紧较简便,用一根镶条可调节各面的间隙,且高度小,结构紧凑;但制造检验不方便,摩擦力较大,刚度较差。用于运动速度不高,受力不大,高度尺寸受限制的场合。
1907年瑞典公司成功研制用于回转运动的滚动轴承。滚动方式与滑动方式相比,能够大大减少摩擦阻力,节省能源,并且明显改善机械性能。 1932年,法国公布了用于直线运动的滚动直线导轨专利,从此决定了滚动直线导轨的基本形式。 滚动直线导轨可以理解为是一种滚动的运动部件,是由滚动体(钢球或滚柱)在滑块跟导轨之间的无限滚动循环,从而使负载平台能够沿着导轨进行高精度的线性运动。 滚动直线导轨副是由带滚道的导轨、安装在导轨上的滑块、位于滑块和导轨间循环运动的滚动体、返向器以及密封端盖等组成。 具有滚道的导轨是决定整个导轨组件的导向精度和运动性能的主要元件,用螺钉紧固在机床固定部件上(如床身、立柱等),其安装底面、定位侧面和滚道经过精密平面成形磨削,保证了滚道精确的几何形状,以及滚道与安装定位面之间的精确的尺寸精度。 滑块一般用螺钉紧固在机床运动部件上(如工作台,主轴箱等)。滑块上的返向器采用高强度工程塑料制成并引导滚动体返向形成连续的循环运动。密封端盖和密封底片是防尘的必要部件。导轨副的润滑通过油杯注入润滑油脂来进行。 自20世纪70年代末滚动直线导轨副开始商品化以来,其逐渐替代了传统的滑动导轨,广泛应用于精密机械中,成为数控机床、工业机器人以及各种测量仪器的重要组成部分,特别是作为高档数控机床的关键功能部件得到广泛的应用。 滚动直线导轨副主要由导轨、滑块、滚动体(滚柱或滚珠)以及返向器等组成。当滑块与导轨相对移动时,滚动体在导轨和滑块滚道直接滚动,并通过返向器的滚道,从工作负荷区到非工作负荷区,然后再滚动回工作负荷区,不断循环,从而把导轨和滑块之间的相对运动由滑动变成滚动体的滚动。 为了防止灰尘和异物进入导轨滚道,滑块两端及下部均装有橡胶密封垫,滑块上还装有润滑注油杯,通过手动或自动给滑块注油润滑。同时滑块端部还可以配备自润滑装置,使用时在
机床导轨直线度测量 昆山高锋:李明 正在测量 Y轴平面 直线、测量导轨平面直线度时镭射架设方式如上面照片所示; 平面直线mm以内,水平调整较好的情况下能达到0.01;
4、透射镜,镭射发射的光首先经过透射镜 ; 5、 镭射的架设,首先放置折射镜,放置如前面照片所示,标示面朝向要测量的平面,先不安装透射镜,在最近距离时先对好镭射光,再推动滑块后移,这时反射回来的光线会偏移这时用镭射机后面的微调左右上下调正,调整时不能调整平移和上发射光 回授光
下摇把,等到拉到最后面后,微调对好光,再移到最前面利用上下左右摇把调整对光,来回数次后在最远端镭射感应光是绿色及可加装透射镜如前面照片所示,再进行类似前面的调整,使光的强度在绿域即可;
上图数据设定的由来:(上图设定已经过核对) 脚间距:设定200mm 测量导轨时要先用彩色白板笔划线给导轨分段,用滑块一般为200mm长,划线并编上序号,编序号的目的是在测量后发现有问题段时,可以根据序号的对应很快对应到问题段; 导轨长度:设定=脚间距×分的段数 如:导轨以200分段后分出26段,其导轨长度设定就是200mm ×26段=5200mm 测站:数值由脚间距和导轨长度自动生成 测量时的操作步骤: 1、先用200长滑块给机床导轨分段,分段由架设镭射机一边 开始分段并编上序号,至导轨另一端结束,并记录最后号数; 2、摆放镜头并对镭射光; 3、设定镭射软件参数;
河南机电高等专科学校 毕业设计说明书 论文题目:滚动直线导轨副反向器的设计 系部:机械工程系 专业:机械制造与自动化 班级:机制061 学生姓名:王生伟 学号:060114123 指导教师:程雪利 2009年5 月22 日
第1章绪论 1.1引言 随着数控技术和机电一体化的普及和发展,机械传动机构的定位精度、导向的精度和进给速度在不断提高。传统的导向机构发生了重大变化,从七十年代中期开始,直线滚动导轨以其独有特点在越来越多的领域中得到应用。 直线滚动导轨一般有导轨、滑动块、反向器、滚动体和保持器等组成。它是一种新型的作为相对往复直线运动的滚动支承。能以滑块和导轨见的钢球滚动来代替直接的滑动接触,并且滚动体可以在滚道和滑块内实现无限循环。基于结构上的特点,与滚动导轨相比,它具有卓越的特点和优良的使用性能。 1.1.1摩擦特性 滚动直线导轨副在摩擦特性方面具有突出的优点,其摩擦阻力比滑动导轨小的多,摩擦系数u=0.002.0.004为滑动导轨的1/50左右,起动摩擦和动摩擦接近相等。在速度变化时u值稳定,运动轻快、灵活、平稳。因而可实现高速运动,提高了生产效率。 1.1.2 运动精度 滚动直线导轨副的摩擦系数极小,因此在起动是无颤动,低速下运动无爬行现象。当施加愈加载荷时可以消除间隙,提高刚性和精度。此外具有自动调心补偿安装基面误差的功能。故其整体运动精度高,因此可制成高精度高性能的机械。另外,由于滚动直线导轨具有很好的误差均化功能。 1.1.3寿命特点
滚动直线导轨副具有较好的承载特性,可以承受不同方向的力和力矩载荷。大部分的能量以磨损的形式消耗掉,因而磨损快,难以长期维持精度。相反,滚动直线导轨副摩擦小、磨损小及温升小,可以长期维持高精度,具有较长的精度寿命。 1.1.4承载特性 滚动直线导轨副具有较好的承载特性,可以承受不同方向的力和力矩载荷,可承受上下、左右的力及颠簸力矩、摇动力矩和摆动力矩等。具有很好的载荷适应性。在设计制造中加以适当预加载荷,可以增加阻尼以提高抗震性,同时可消除高频振动现象。如图1.1所示 图1.1 滚动直线 经济性能 滚动直线导轨副因其摩擦阻力小、磨损小以及润滑维修保养容易,故维修成本低廉。此外,滚动直线导轨还有很好的互换性,易行成标准化、系列化,并有专业厂家成批生产,使用户选用十分方便,从而缩短了设计工时。另外节能省油使滚动直线导轨副的又以显著特点。总之,滚动直线导轨副作为一种新型支承部件由于在许多方面都具有突出特点,因而近年来被广泛应用于各种数控机床、加工中心精密工作台、工业机器人及医疗器械、检测仪器、轻工机械、运输机械之中,促进了机械工业的技术进步,带来了巨大的经济效益。
轨道直线度误差测量 一、实验目的: 1、掌握用水平仪测量垂直平面内的直线、掌握用作图法求直线度误差,用最小区域法评定直线、了解其他测量直线度误差的方法。 二、实验内容: 测量导轨直线度误差或测量平板一对角线的直线度误差。 三、水平仪的结构、工作原理: 1、水平仪的结构 框式水平仪一般是制成矩形框架,它们互相垂直平行,下方框边的上面装有一个水准器(密封的玻璃容器),本实验用i=0.01mm/l000mm水平仪。 2、测量工作原理: 以自然水平面为测量基准。用节距法(又称跨距法)对被测直线进行逐段测量,得到各段的读数然后经过数据处理,就可以用作图法或计算法求出误差值。 四、测量时注意事项 1、使用水平仪要尽量避免人的体温对它的影响。 2、测好一段.应推动板桥向后一测量段滑进,等气泡完全静止下来再读数。水平仪置于板桥上是作为一整体使用,测量过程中二者之间尽量不要发生相对移动。 3、作图力求准确,比例恰当,图面清晰。
五、实验步骤 1.将水平仪、桥板擦干净,将被测面去毛刺并擦净。 2.初步调平被测表面(导轨、平尺、平板、工作台)。 3.用节距法测量。桥板节距由被测长度L划分成若干等分段确定,跨距一般为100~250mm。将水平仪置于桥板上,从一端开始,逐段测量,做到相邻两段首尾相接。为使所作误差曲线图为实际形状误差的一致性,我们从左向右逐段进行测量。第一段的起点称为原点,第一段的末点是第1点,测得的读数表示该段末点相对起点的升降,将水平仪读数记于实验报告相应栏目中,然后将桥板连同水平仪滑移至第二段,使第一段末点与第二段的起点相衔接,就可测得第二点的读数。依此类推,直至测量完毕。 4.对测得值进行数据处理,用作图法求直线度误差f_。 用分度值: i =0.01 mm/m的合象水平仪检测长导轨的直线mm.测量数据列于下表: 六、数据处理
导轨直线度的检测方法 机床导轨一般时由两条以上的单根导轨组合而成。按外型可分为矩形导轨和V 型导轨。按工作方式可分为直线运动导轨和旋转运动导轨。导轨的直线度可分解为 互相垂直的两个平面的直线度,即垂直面内的直线所示,导轨的直线度就时指:组成V形(或矩形)导轨的平面与通过该平面的垂直平面(或水平面)的交线的直线度。常用的检测工具有:水
平仪、平尺以及光学仪器入自准仪、钢丝和显微镜等。当被测件长度不大于 1600mm时,选用水平仪、平尺或光学仪器,当被测件长度大于1600mm时,测只可用水平仪和光学仪器检测。 评定机床导轨的直线度误差的方法有最小包容区域法和两点连线(间隙法 间隙法是指用量块(或)塞尺测量被测平面导轨和测量基准线(常用平尺类量具 体现)间的间隙,直接评定直线度法差值的方法。 如图3-3-3所示,将一标准平尺置于被测平面导轨上,在距离平尺两端各约 2/9L(L为平尺长度)处垫上等量块。然后用片状塞规或塞尺测检平尺工作面和被测 导轨面间的间隙。若将实测间隙减去所用的等高量块的高度值后,小于机床规定的 直线度允差:则说明该机床的导轨直线度误差符合精度要求。 图3-3-3 1——等高块 2——量块 例:某机床导轨的直线mm/m。等高量块高度为h。若选用h0mm 厚的片状塞规或塞尺,在导+0.012 轨上相距为1m的任何地方均不能塞入,则该导轨的直线度符合精度要求。
滚动直线、基础件上安装导轨副的安装平面的精度要求: 使用单根导轨副的安装面其平面精度可略低于导轨副运行精度。 同一平面内使用两根或两根以上导轨副时,其安装面精度可低于导轨副运行精度。建议按下表选用的精度要求: 2、导轨副连接基准面的结构形式:
推回去。若因安装困难,需要拆下滑块,可向我公司定购引导轨。(引导轨是一种装配辅助工具,其实际尺寸比导轨小一号。需要时,可将导轨与引导轨的端头对接,把滑块从导轨推到引导轨上,当导轨安装好后,再将滑块从引导轨推到导轨上,注意基准方向)。 安装注意事项 首先正确区分基准导轨副与非基准导轨副(基准导轨上有J的标记,滑块上有磨光的基准侧面): 其次认清导轨副安装时所需的基准侧面: 导轨副的基本安装步骤:
(1)、基准导轨副的安装方法(有下述两种方法): a、利用U型夹头将导轨的基准侧面与安装台阶的基准侧面夹紧,然后在该处用固定螺栓拧紧(建议采用配攻螺纹孔),由一端开始,依次将导轨固定:
b、无安装台阶时,将导轨一端固定后,按下图所示方法将表针靠在导轨的基准侧面,以直线块规为基准,自导轨的一端开始读取指针值校准直线度,并依次将导轨固定. (2)、非基准导轨副的安装方法: 如下图所示,将吸铁表座固定在基准导轨副的滑块上,量表的指针顶在非基准导轨副的导轨基准侧面,从导轨的一端开始读取平行度一面顺次将非基准导轨副固定好;另外,亦可参照(1)中两图所示的方法。
实验二导轨直线度误差测量 一、实验目的 1、掌握用水平仪测量直线度误差的方法及数据处理。 2、加深对直线度误差定义的理解。 二、实验内容 用合象水平仪测量直线度误差。 三、测量原理及计量器具说明 机床、仪器导轨或其他窄而长的平面,为了控制其直线度误差,常在给定平面(垂直平面、水平平面)内进行仔细的检测。常驻用的计量器具有框式水平仪、合象水平仪、电子水平仪和自准直仪等到。使用这类器具的共同特点是测定微小角度的变化。由于被测表面存在着直线度误差,计量器具置于不同的被测部位上,其倾斜度就要发生相应的变化。如果节距(相邻两测点的距离)一经确定,这个变化的微小倾角与被测相邻两点的高低差就有确切的对应关系。通过对逐个节距的测量,得出变化的角度,用作图或计算,即可求出被测表面的直线度误差值。由于合象水平仪的测量准确度高、测量范围大(±10mm/m)、测量效率高、价格实惠公道、携带方便等优点,故在检测工作中得到了广泛的采用。 合象水平仪的结构如图1a、d所示,它由底板1和壳体4组成外壳,其内部则由杠杆2、水准器8、两个棱镜7、测量系统9、10、11以及放大镜6所组成。 使用时将合象水平仪放于桥板(图2)上相对不动,再将桥板放于被测表面上。如果被测表面无直线度误差,并与自然水平基准平行,此时水准器的气泡边逐通过合象棱镜7所产生的影象,在放大镜6中观察将出现如图1b所示的情况。但在实际测量中,由于被测表面安放位置不理想和被测表面不宜,导致气泡移动,其视场情况将如图1c所示。此时可转动测微螺杆10,使水准器转动一角度,从而使气泡返回棱镜组7的中间位置,则图1c中的两影象的错移量*消失而恢复成一个光滑的半圆头(图1b)。测微螺杆移动量s导致水准器的转角a(图1d)与被测表面相邻两点的高低差h有确切的对应关系,即 h=0.01La(μm) 式中0.01——合象水平仪的分度值(mm/m); L——桥板节距(mm); α——角度读数值(用格数来计数)。 α值,为了阐述直线度误差的评定方法,后面将用实例加以叙述。 如此逐点测量,就可得到相应的 i (a)
HIWIN导轨 HIWIN导轨随着现代制造技术的不断发展,使得传统的制造业发生了巨大的变化,数控技术、机电一体化和工业机器人在生产中得到了更加广泛的应用。同时机械传动机构的定位精度、导向精度和进给速度在不断提高,使传统的导向机构发生了重大变化。自 1973年开始商品化以来,滚动直线导轨副以其独有的特性,逐渐取代了传统的滑动HIWIN导轨,在工业生产中得到了广泛的应用。适应了现今机械对于高精度、高速度、节约能源以及缩短产品开发周期的要求,已被广泛应用在各种重型组合加工机床、数控机床、高精度电火花切割机、磨床、工业用机器人乃至一般产业用的机械中。 滚动HIWIN导轨副的性能特点 1.定位精度高 滚动HIWIN直线导轨的运动借助钢球滚动实现,导轨副摩擦阻力小,动静摩擦阻力差值小,低速时不易产生爬行。重复定位精度高,适合作频繁启动或换向的运动部件。可将机床定位精度设定到超微米级。同时根据需要,适当增加预载荷,确保钢球不发生滑动,实现平稳运动,减小了运动的冲击和振动。 2.磨损小 对于滑动导轨面的流体润滑,由于油膜的浮动,产生的运动精度误差是无法避免的。在绝大多数情况下,流体润滑只限于边界区域,由金属接触而产生的直接摩擦是无法避免的,在这种摩擦中,大量的能量以摩擦损耗被浪费掉了。与之相反,滚动接触由于摩擦耗能小,滚动面的摩擦损耗也相应减少,故能使滚动直线导轨系统长期处于高精度状态。同时,由于使用润滑油也很少,这使得在机床的润滑系统设计及使用维护方面都变的非常容易。 3.适应高速运动且大幅降低驱动功率 采用滚动直线导轨的机床由于摩擦阻力小,可使所需的动力源及动力传递机构小型化,使驱动扭矩大大减少,使机床所需电力降低80%,节能效果明显。可实现机床的高速运动,提高机床的工作效率20~30%。 4.承载能力强 滚动直线导轨副具有较好的承载性能,可以承受不同方向的力和力矩载荷,如承受上下左右方向的力,以及颠簸力矩、摇动力矩和摆动力矩。因此,具有很好的载荷适应性。在设计制造中加以适当的预加载荷可以增加阻尼,以提高抗振性,同时能消除高频振动现象。而滑动导轨在平行接触面方向可承受的侧向负荷较小,易造成机床运行精度不良。 5.组装容易并具互换性 传统的滑动导轨必须对导轨面进行刮研,既费事又费时,且一旦机床精度不良,必须再刮研一次。滚动导轨具有互换性,只要更换滑块或导轨或整个滚动导轨副,机床即可重新获得高精度。 如前所述,由于滚珠在导轨与滑块之间的相对运动为滚动,可减少摩擦损失。通常滚动摩擦系数为滑动摩擦系数的2%左右,因此采用滚动导轨的传动机构远优越于传统滑动导轨。 滚动直线导轨副的选用方法
直线.根据实际应用工况初步选定型号系列和配置方式 2.静安全系数验算 直线运动系统承受过大的静载荷时,滚动体和接触面会发生永久变形,这个永久变形如果大到一定程度时,就会影响直线运动系统的平稳运行。所以要根据基本额定静载荷和最大实际静载荷来验算静安全系数是否达到要求。 3.寿命验算 利用额定动载荷和最大实际动载荷来验算直线运动系统所能运行的里程数或时间数是否能达到我们的要求。 4.如果静安全系数和寿命其中的一项或均达不到要求,就需要改变型号系列和配置方式重 新计算了。 相关定义: 基本额定静负荷C0(N):在产生最大应力的接触部位,使滚动体和导轨面永久变形量之和达到滚动体直径的0.0001倍时,大小一定的径向静止负载。作为静作用力的限度。 容许静力矩M R/P/Y(Nm):在产生最大应力的接触部位,使滚动体和导轨面永久变形量之和达到滚动体直径的0.0001倍时,方向和大小一定的静止力矩。作为静作用力矩的限度。 静安全系数f s:负载能力(基本额定静负荷C0、容许静力矩M R/P/Y)与实际负荷(F、M r/p/y)的比值。f s=C0/F或f s=M R/P/Y/M r/p/y。 基本额定动载荷C(N):一批相同的直线运动系统在相同条件下运行,使滚珠直线km、滚柱直线km的方向和大小一定的负荷。 额定寿命L(km):一批相同的直线运动系统在相同条件下运行,其中90%不产生表面剥落而所能达到的总运行距离。直线运动系统的额定寿命L是根据基本额定动负载C和实际最大负荷F max按下式计算得到的: 滚珠直线运动系统寿命:L=(C/F max)3×50 滚柱直线运动系统寿命:L=(C/F max)10/3×100 1.使用条件确定: 导轨安装空间;安装姿势(水平、竖直、倾斜、悬臂等);负载情况(大小、方向、位置等);尺寸(长度、跨距、滑块个数、导轨根数等);使用频度(负荷周期);速度、加速度;要求寿命;精度、刚度要求;使用环境等 在特殊环境下,首先要考虑材料(标准材料、不锈钢材料等)、润滑(脂润滑、油润滑、其它润滑剂,定期润滑、强制润滑等)、表面处理(防锈、外观、淬火等)、防护等条件。 2.形式和系列的选择: 不同的厂家有不同的导轨系列和形式,有的是针对不同应用领域而分类的(比如:一般机床应用、产业自动化机器应用、仪器仪表类机器应用、重型机器应用),台湾HIWIN就是这样分的;有的是按所受载荷形式来分类的(主要承受上下载荷类、上下左右四向载荷相当类),日本NSK和THK就是这样来分的。其实,不管怎么分类,均是按载荷大小和作用方向来分类的。结合实际应用中的载荷情况,确定导轨的形式和系列。 3.选用精度等级 因为导轨部是由导轨、滑块、滚动体等零件组装而成的,各零件的制造精度和它们间的装配精度必然导致装配完成后总体精度误差,这个误差的大小就是导轨的精度等级问题。具体的比如有:滑块顶面相对于导轨底面、滑块侧面相对于导轨定位面的运行精度、一根导轨上若干滑块顶面的高度差距等。各个厂家均会将自己的产品按精度大小分成若干等级,我们